Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 326(5): H1252-H1265, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517229

RESUMO

Perivascular adipose tissue (PVAT) is increasingly recognized for its function in mechanotransduction. However, major gaps remain in our understanding of the cells present in PVAT, as well as how different cells contribute to mechanotransduction. We hypothesized that snRNA-seq would reveal the expression of mechanotransducers, and test one (PIEZO1) to illustrate the expression and functional agreement between single-nuclei RNA sequencing (snRNA-seq) and physiological measurements. To contrast two brown tissues, subscapular brown adipose tissue (BAT) was also examined. We used snRNA-seq of the thoracic aorta PVAT (taPVAT) and BAT from male Dahl salt-sensitive (Dahl SS) rats to investigate cell-specific expression mechanotransducers. Localization and function of the mechanostransducer PIEZO1 were further examined using immunohistochemistry (IHC) and RNAscope, as well as pharmacological antagonism. Approximately 30,000 nuclei from taPVAT and BAT each were characterized by snRNA-seq, identifying eight major cell types expected and one unexpected (nuclei with oligodendrocyte marker genes). Cell-specific differential gene expression analysis between taPVAT and BAT identified up to 511 genes (adipocytes) with many (≥20%) being unique to individual cell types. Piezo1 was the most highly, widely expressed mechanotransducer. The presence of PIEZO1 in the PVAT but not the adventitia was confirmed by RNAscope and IHC in male and female rats. Importantly, antagonism of PIEZO1 by GsMTX4 impaired the PVAT's ability to hold tension. Collectively, the cell compositions of taPVAT and BAT are highly similar, and PIEZO1 is likely a mechanotransducer in taPVAT.NEW & NOTEWORTHY This study describes the atlas of cells in the thoracic aorta perivascular adipose tissue (taPVAT) of the Dahl-SS rat, an important hypertension model. We show that mechanotransducers are widely expressed in these cells. Moreover, PIEZO1 expression is shown to be restricted to the taPVAT and is functionally implicated in stress relaxation. These data will serve as the foundation for future studies investigating the role of taPVAT in this model of hypertensive disease.


Assuntos
Tecido Adiposo Marrom , Aorta Torácica , Canais Iônicos , Mecanotransdução Celular , Proteínas de Membrana , Ratos Endogâmicos Dahl , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Masculino , Canais Iônicos/metabolismo , Canais Iônicos/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo/metabolismo , Ratos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/genética , Hipertensão/patologia , RNA-Seq
2.
J Biol Chem ; 300(1): 105500, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013089

RESUMO

The aryl hydrocarbon receptor is a ligand-activated transcription factor known for mediating the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. TCDD induces nonalcoholic fatty liver disease (NAFLD)-like pathologies including simple steatosis that can progress to steatohepatitis with fibrosis and bile duct proliferation in male mice. Dose-dependent progression of steatosis to steatohepatitis with fibrosis by TCDD has been associated with metabolic reprogramming, including the disruption of amino acid metabolism. Here, we used targeted metabolomic analysis to reveal dose-dependent changes in the level of ten serum and eleven hepatic amino acids in mice upon treatment with TCDD. Bulk RNA-seq and protein analysis showed TCDD repressed CPS1, OTS, ASS1, ASL, and GLUL, all of which are associated with the urea cycle and glutamine biosynthesis. Urea and glutamine are end products of the detoxification and excretion of ammonia, a toxic byproduct of amino acid catabolism. Furthermore, we found that the catalytic activity of OTC, a rate-limiting step in the urea cycle was also dose dependently repressed. These results are consistent with an increase in circulating ammonia. Collectively, the repression of the urea and glutamate-glutamine cycles increased circulating ammonia levels and the toxicity of TCDD.


Assuntos
Amônia , Redes e Vias Metabólicas , Hepatopatia Gordurosa não Alcoólica , Dibenzodioxinas Policloradas , Animais , Masculino , Camundongos , Amônia/sangue , Amônia/metabolismo , Fibrose , Glutamina/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos
3.
Sci Rep ; 13(1): 16598, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789023

RESUMO

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is associated with metabolic syndrome (MetS) in humans and elicits pathologies in rodents that resemble non-alcoholic fatty liver disease (NAFLD) in humans through activation of the aryl hydrocarbon receptor (AHR) pathway. Dysregulation of cholesterol homeostasis, an aspect of MetS, is linked to NAFLD pathogenesis. TCDD exposure is also linked to the suppression of genes that encode key cholesterol biosynthesis steps and changes in serum cholesterol levels. In a previous experiment, treating mice with TCDD in the presence of simvastatin, a 3-Hydroxy-3-Methylglutaryl-CoA Reductase competitive inhibitor, altered lipid and glycogen levels, AHR-battery gene expression, and liver injury in male mice compared to TCDD alone. The aim of this study was to deduce a possible mechanism(s) for the metabolic changes and increased injury using single-nuclei RNA sequencing in mouse liver. We demonstrated that co-treated mice experienced wasting and increased AHR activation compared to TCDD alone. Furthermore, relative proportions of cell (sub)types were different between TCDD alone and co-treated mice including important mediators of NAFLD progression like hepatocytes and immune cell populations. Analysis of non-overlapping differentially expressed genes identified several pathways where simvastatin co-treatment significantly impacted TCDD-induced changes, which may explain the differences between treatments. Overall, these results demonstrate a connection between dysregulation of cholesterol homeostasis and toxicant-induced metabolic changes.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Dibenzodioxinas Policloradas , Humanos , Camundongos , Masculino , Animais , Dibenzodioxinas Policloradas/toxicidade , Sinvastatina/farmacologia , Sinvastatina/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Expressão Gênica , Colesterol/metabolismo
4.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873456

RESUMO

Perivascular adipose tissue (PVAT) is increasingly recognized for its function in mechanotransduction. To examine the cell-specificity of recognized mechanotransducers we used single nuclei RNA sequencing (snRNAseq) of the thoracic aorta PVAT (taPVAT) from male Dahl SS rats compared to subscapular brown adipose tissue (BAT). Approximately 30,000 nuclei from taPVAT and BAT each were characterized by snRNAseq, identifying 8 major cell types expected and one unexpected (nuclei with oligodendrocyte marker genes). Cell-specific differential gene expression analysis between taPVAT and BAT identified up to 511 genes (adipocytes) with many (≥20%) being unique to individual cell types. Piezo1 was the most highly, widely expressed mechanotransducer. Presence of PIEZO1 in the PVAT was confirmed by RNAscope® and IHC; antagonism of PIEZO1 impaired the PVAT's ability to hold tension. Collectively, the cell compositions of taPVAT and BAT are highly similar, and PIEZO1 is likely a mechanotransducer in taPVAT.

5.
Patterns (N Y) ; 4(8): 100817, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602218

RESUMO

Single-cell sequencing reveals the heterogeneity of cellular response to chemical perturbations. However, testing all relevant combinations of cell types, chemicals, and doses is a daunting task. A deep generative learning formalism called variational autoencoders (VAEs) has been effective in predicting single-cell gene expression perturbations for single doses. Here, we introduce single-cell variational inference of dose-response (scVIDR), a VAE-based model that predicts both single-dose and multiple-dose cellular responses better than existing models. We show that scVIDR can predict dose-dependent gene expression across mouse hepatocytes, human blood cells, and cancer cell lines. We biologically interpret the latent space of scVIDR using a regression model and use scVIDR to order individual cells based on their sensitivity to chemical perturbation by assigning each cell a "pseudo-dose" value. We envision that scVIDR can help reduce the need for repeated animal testing across tissues, chemicals, and doses.

6.
Environ Health Perspect ; 131(6): 65001, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37352010

RESUMO

BACKGROUND: Funding agencies, publishers, and other stakeholders are pushing environmental health science investigators to improve data sharing; to promote the findable, accessible, interoperable, and reusable (FAIR) principles; and to increase the rigor and reproducibility of the data collected. Accomplishing these goals will require significant cultural shifts surrounding data management and strategies to develop robust and reliable resources that bridge the technical challenges and gaps in expertise. OBJECTIVE: In this commentary, we examine the current state of managing data and metadata-referred to collectively as (meta)data-in the experimental environmental health sciences. We introduce new tools and resources based on in vivo experiments to serve as examples for the broader field. METHODS: We discuss previous and ongoing efforts to improve (meta)data collection and curation. These include global efforts by the Functional Genomics Data Society to develop metadata collection tools such as the Investigation, Study, Assay (ISA) framework, and the Center for Expanded Data Annotation and Retrieval. We also conduct a case study of in vivo data deposited in the Gene Expression Omnibus that demonstrates the current state of in vivo environmental health data and highlights the value of using the tools we propose to support data deposition. DISCUSSION: The environmental health science community has played a key role in efforts to achieve the goals of the FAIR guiding principles and is well positioned to advance them further. We present a proposed framework to further promote these objectives and minimize the obstacles between data producers and data scientists to maximize the return on research investments. https://doi.org/10.1289/EHP11484.


Assuntos
Saúde Ambiental , Genômica , Reprodutibilidade dos Testes , Disseminação de Informação , Metadados
7.
Chem Res Toxicol ; 36(6): 900-915, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37184393

RESUMO

Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been associated with the induction of oxidative stress and the progression of steatosis to steatohepatitis with fibrosis. It also disrupts metabolic pathways including one-carbon metabolism (OCM) and the transsulfuration pathway with possible consequences on glutathione (GSH) levels. In this study, complementary RNAseq and metabolomics data were integrated to examine the hepatic transsulfuration pathway and glutathione biosynthesis in mice following treatment with TCDD every 4 days for 28 days. TCDD dose-dependently repressed hepatic cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CTH) mRNA and protein levels. Reduced CBS and CTH levels are also correlated with dose-dependent decreases in hepatic extract hydrogen sulfide (H2S). In contrast, cysteine levels increased consistent with the induction of Slc7a11, which encodes for the cystine/glutamate Xc- antiporter. Cotreatment of primary hepatocytes with sulfasalazine, a cystine/glutamate Xc- antiporter inhibitor, decreased labeled cysteine incorporation into GSH with a corresponding increase in TCDD cytotoxicity. Although reduced and oxidized GSH levels were unchanged following treatment due to the induction of GSH/GSSG efflux transporter by TCDD, the GSH:GSSG ratio decreased and global protein S-glutathionylation levels in liver extracts increased in response to oxidative stress along with the induction of glutamate-cysteine ligase catalytic subunit (Gclc), glutathione synthetase (Gss), glutathione disulfide reductase (Gsr), and glutathione transferase π (Gstp). Furthermore, levels of ophthalmic acid, a biomarker of oxidative stress indicating GSH consumption, were also increased. Collectively, the data suggest that increased cystine transport due to cystine/glutamate Xc- antiporter induction compensated for decreased cysteine production following repression of the transsulfuration pathway to support GSH synthesis in response to TCDD-induced oxidative stress.


Assuntos
Fígado Gorduroso , Dibenzodioxinas Policloradas , Camundongos , Animais , Cisteína/metabolismo , Cistina , Dissulfeto de Glutationa/metabolismo , Dibenzodioxinas Policloradas/farmacologia , Ácido Glutâmico , Antiporters , Glutationa/metabolismo
8.
Sci Rep ; 13(1): 4138, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914879

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that induces the progression of steatosis to steatohepatitis with fibrosis in mice. Furthermore, TCDD reprograms hepatic metabolism by redirecting glycolytic intermediates while inhibiting lipid metabolism. Here, we examined the effect of TCDD on hepatic acetyl-coenzyme A (acetyl-CoA) and ß-hydroxybutyrate levels as well as protein acetylation and ß-hydroxybutyrylation. Acetyl-CoA is not only a central metabolite in multiple anabolic and catabolic pathways, but also a substrate used for posttranslational modification of proteins and a surrogate indicator of cellular energy status. Targeted metabolomic analysis revealed a dose-dependent decrease in hepatic acetyl-CoA levels coincident with the phosphorylation of pyruvate dehydrogenase (E1), and the induction of pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase phosphatase, while repressing ATP citrate lyase and short-chain acyl-CoA synthetase gene expression. In addition, TCDD dose-dependently reduced the levels of hepatic ß-hydroxybutyrate and repressed ketone body biosynthesis gene expression. Moreover, levels of total hepatic protein acetylation and ß-hydroxybutyrylation were reduced. AMPK phosphorylation was induced consistent with acetyl-CoA serving as a cellular energy status surrogate, yet subsequent targets associated with re-establishing energy homeostasis were not activated. Collectively, TCDD reduced hepatic acetyl-CoA and ß-hydroxybutyrate levels eliciting starvation-like conditions despite normal levels of food intake.


Assuntos
Fígado Gorduroso , Dibenzodioxinas Policloradas , Camundongos , Animais , Acetilcoenzima A/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Ácido 3-Hidroxibutírico/metabolismo , Fígado/metabolismo , Fígado Gorduroso/metabolismo
9.
Toxicol Sci ; 191(1): 135-148, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36222588

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) dose-dependently induces the development of hepatic fat accumulation and inflammation with fibrosis in mice initially in the portal region. Conversely, differential gene and protein expression is first detected in the central region. To further investigate cell-specific and spatially resolved dose-dependent changes in gene expression elicited by TCDD, single-nuclei RNA sequencing and spatial transcriptomics were used for livers of male mice gavaged with TCDD every 4 days for 28 days. The proportion of 11 cell (sub)types across 131 613 nuclei dose-dependently changed with 68% of all portal and central hepatocyte nuclei in control mice being overtaken by macrophages following TCDD treatment. We identified 368 (portal fibroblasts) to 1339 (macrophages) differentially expressed genes. Spatial analyses revealed initial loss of portal identity that eventually spanned the entire liver lobule with increasing dose. Induction of R-spondin 3 (Rspo3) and pericentral Apc, suggested dysregulation of the Wnt/ß-catenin signaling cascade in zonally resolved steatosis. Collectively, the integrated results suggest disruption of zonation contributes to the pattern of TCDD-elicited NAFLD pathologies.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Dibenzodioxinas Policloradas , Camundongos , Masculino , Animais , Dibenzodioxinas Policloradas/toxicidade , Transcriptoma , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Perfilação da Expressão Gênica
10.
J Biol Chem ; 298(9): 102301, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931118

RESUMO

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that induces diverse biological and toxic effects, including reprogramming intermediate metabolism, mediated by the aryl hydrocarbon receptor. However, the specific reprogramming effects of TCDD are unclear. Here, we performed targeted LC-MS analysis of hepatic extracts from mice gavaged with TCDD. We detected an increase in S-(2-carboxyethyl)-L-cysteine, a conjugate from the spontaneous reaction between the cysteine sulfhydryl group and highly reactive acrylyl-CoA, an intermediate in the cobalamin (Cbl)-independent ß-oxidation-like metabolism of propionyl-CoA. TCDD repressed genes in both the canonical Cbl-dependent carboxylase and the alternate Cbl-independent ß-oxidation-like pathways as well as inhibited methylmalonyl-CoA mutase (MUT) at lower doses. Moreover, TCDD decreased serum Cbl levels and hepatic cobalt levels while eliciting negligible effects on gene expression associated with Cbl absorption, transport, trafficking, or derivatization to 5'-deoxy-adenosylcobalamin (AdoCbl), the required MUT cofactor. Additionally, TCDD induced the gene encoding aconitate decarboxylase 1 (Acod1), the enzyme responsible for decarboxylation of cis-aconitate to itaconate, and dose-dependently increased itaconate levels in hepatic extracts. Our results indicate MUT inhibition is consistent with itaconate activation to itaconyl-CoA, a MUT suicide inactivator that forms an adduct with adenosylcobalamin. This adduct in turn inhibits MUT activity and reduces Cbl levels. Collectively, these results suggest the decrease in MUT activity is due to Cbl depletion following TCDD treatment, which redirects propionyl-CoA metabolism to the alternate Cbl-independent ß-oxidation-like pathway. The resulting hepatic accumulation of acrylyl-CoA likely contributes to TCDD-elicited hepatotoxicity and the multihit progression of steatosis to steatohepatitis with fibrosis.


Assuntos
Acil Coenzima A , Poluentes Ambientais , Fígado Gorduroso , Fígado , Dibenzodioxinas Policloradas , Deficiência de Vitamina B 12 , Vitamina B 12 , Ácido Aconítico/metabolismo , Acil Coenzima A/metabolismo , Animais , Cobalto/metabolismo , Cisteína/metabolismo , Poluentes Ambientais/toxicidade , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Camundongos , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Succinatos/metabolismo , Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/induzido quimicamente , Deficiência de Vitamina B 12/complicações
11.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163483

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known for mediating the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Although the canonical mechanism of AhR activation involves heterodimerization with the aryl hydrocarbon receptor nuclear translocator, other transcriptional regulators that interact with AhR have been identified. Enrichment analysis of motifs in AhR-bound genomic regions implicated co-operation with COUP transcription factor (COUP-TF) and hepatocyte nuclear factor 4 (HNF4). The present study investigated AhR, HNF4α and COUP-TFII genomic binding and effects on gene expression associated with liver-specific function and cell differentiation in response to TCDD. Hepatic ChIPseq data from male C57BL/6 mice at 2 h after oral gavage with 30 µg/kg TCDD were integrated with bulk RNA-sequencing (RNAseq) time-course (2-72 h) and dose-response (0.01-30 µg/kg) datasets to assess putative AhR, HNF4α and COUP-TFII interactions associated with differential gene expression. Functional enrichment analysis of differentially expressed genes (DEGs) identified differential binding enrichment for AhR, COUP-TFII, and HNF4α to regions within liver-specific genes, suggesting intersections associated with the loss of liver-specific functions and hepatocyte differentiation. Analysis found that the repression of liver-specific, HNF4α target and hepatocyte differentiation genes, involved increased AhR and HNF4α binding with decreased COUP-TFII binding. Collectively, these results suggested TCDD-elicited loss of liver-specific functions and markers of hepatocyte differentiation involved interactions between AhR, COUP-TFII and HNF4α.


Assuntos
Fatores de Transcrição COUP/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Genoma , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Sequência de Bases , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Motivos de Nucleotídeos/genética , Ligação Proteica , RNA-Seq , Transcrição Gênica
12.
Nucleic Acids Res ; 50(8): e48, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35061903

RESUMO

The application of single-cell RNA sequencing (scRNAseq) for the evaluation of chemicals, drugs, and food contaminants presents the opportunity to consider cellular heterogeneity in pharmacological and toxicological responses. Current differential gene expression analysis (DGEA) methods focus primarily on two group comparisons, not multi-group dose-response study designs used in safety assessments. To benchmark DGEA methods for dose-response scRNAseq experiments, we proposed a multiplicity corrected Bayesian testing approach and compare it against 8 other methods including two frequentist fit-for-purpose tests using simulated and experimental data. Our Bayesian test method outperformed all other tests for a broad range of accuracy metrics including control of false positive error rates. Most notable, the fit-for-purpose and standard multiple group DGEA methods were superior to the two group scRNAseq methods for dose-response study designs. Collectively, our benchmarking of DGEA methods demonstrates the importance in considering study design when determining the most appropriate test methods.


Assuntos
Benchmarking , Projetos de Pesquisa , Teorema de Bayes , Expressão Gênica
13.
Sci Rep ; 11(1): 15689, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344994

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant, induces steatosis by increasing hepatic uptake of dietary and mobilized peripheral fats, inhibiting lipoprotein export, and repressing ß-oxidation. In this study, the mechanism of ß-oxidation inhibition was investigated by testing the hypothesis that TCDD dose-dependently repressed straight-chain fatty acid oxidation gene expression in mice following oral gavage every 4 days for 28 days. Untargeted metabolomic analysis revealed a dose-dependent decrease in hepatic acyl-CoA levels, while octenoyl-CoA and dicarboxylic acid levels increased. TCDD also dose-dependently repressed the hepatic gene expression associated with triacylglycerol and cholesterol ester hydrolysis, fatty acid binding proteins, fatty acid activation, and 3-ketoacyl-CoA thiolysis while inducing acyl-CoA hydrolysis. Moreover, octenoyl-CoA blocked the hydration of crotonyl-CoA suggesting short chain enoyl-CoA hydratase (ECHS1) activity was inhibited. Collectively, the integration of metabolomics and RNA-seq data suggested TCDD induced a futile cycle of fatty acid activation and acyl-CoA hydrolysis resulting in incomplete ß-oxidation, and the accumulation octenoyl-CoA levels that inhibited the activity of short chain enoyl-CoA hydratase (ECHS1).


Assuntos
Poluentes Ambientais/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Oxirredução/efeitos dos fármacos , Dibenzodioxinas Policloradas/farmacologia , Tioléster Hidrolases/antagonistas & inibidores , Acil Coenzima A/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias/metabolismo , Peroxissomos/metabolismo
14.
Toxicol Sci ; 181(2): 285-294, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33720361

RESUMO

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor in the Per-Arnt-Sim superfamily of environmental sensors that is linked to several metabolic diseases, including nonalcoholic fatty liver disease. Much remains unknown regarding the impact of genetic variation in AHR-driven disease, as past studies have focused on a small number of inbred strains. Recently, the presence of a wide range of interindividual variability amongst humans was reported in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the prototypical ligand of the AHR. In this study, a panel of 14 diverse mouse strains was exposed to TCDD for 10 days to characterize the AHR-mediated response across genetic backgrounds. Responses to TCDD are heavily dependent on genetic background. Although mice carry 1 of 4 Ahr alleles known to impact the affinity to AHR-ligands, we observed significant intra-allelic variability suggesting the presence of novel genetic modifiers of AHR signaling. A regression-based approach was used to scan for genes regulated by the AHR and/or associated with TCDD-induced phenotypes. The approach identified 7 genes, 2 of which are novel, that are likely regulated by the AHR based on association with hepatic TCDD burden (p ≤ .05). Finally, we identified 1 gene, Dio1, which was associated with change in percent body fat across the diverse set of strains (p ≤ .05). Overall, the results in this study exemplify the power of genetics-based approaches in identifying novel genes that are putatively regulated by the AHR.


Assuntos
Dibenzodioxinas Policloradas , Receptores de Hidrocarboneto Arílico , Animais , Humanos , Fígado/metabolismo , Camundongos , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais
15.
Cell Mol Gastroenterol Hepatol ; 11(1): 147-159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32791302

RESUMO

BACKGROUND AND AIMS: Characterization of cell specific transcriptional responses to hepatotoxicants is lost in the averages of bulk RNA-sequencing (RNA-seq). Single-cell/nuclei RNA-seq technologies enable the transcriptomes of individual cell (sub)types to be assessed within the context of in vivo models. METHODS: Single-nuclei RNA-sequencing (snSeq) of frozen liver samples from male C57BL/6 mice gavaged with sesame oil vehicle or 30 µg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) every 4 days for 28 days was used to demonstrate the application of snSeq for the evaluation of xenobiotics. RESULTS: A total of 19,907 genes were detected across 16,015 nuclei from control and TCDD-treated livers. Eleven cell (sub)types reflected the expected cell diversity of the liver including distinct pericentral, midzonal, and periportal hepatocyte subpopulations. TCDD altered relative proportions of cell types and elicited cell-specific gene expression profiles. For example, macrophages increased from 0.5% to 24.7%, while neutrophils were only present in treated samples, consistent with histological evaluation. The number of differentially expressed genes (DEGs) in each cell type ranged from 122 (cholangiocytes) to 7625 (midcentral hepatocytes), and loosely correlated with the basal expression level of Ahr, the canonical mediator of TCDD and related compounds. In addition to the expected functions within each cell (sub)types, RAS signaling and related pathways were specifically enriched in nonparenchymal cells while metabolic process enrichment occurred primarily in hepatocytes. snSeq also identified the expansion of a Kupffer cell subtype highly expressing Gpnmb, as reported in a dietary NASH model. CONCLUSIONS: We show that snSeq of frozen liver samples can be used to assess cell-specific transcriptional changes and population shifts in models of hepatotoxicity when examining freshly isolated cells is not feasible.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/genética , Fígado/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , RNA-Seq , Testes de Toxicidade Subaguda/métodos , Animais , Fracionamento Celular , Núcleo Celular/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/citologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dibenzodioxinas Policloradas/administração & dosagem , Análise de Célula Única/métodos
16.
Sci Rep ; 10(1): 14831, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908189

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant, induces steatosis that can progress to steatohepatitis with fibrosis, pathologies that parallel stages in the development of non-alcoholic fatty liver disease (NAFLD). Coincidently, one carbon metabolism (OCM) gene expression and metabolites are often altered during NAFLD progression. In this study, the time- and dose-dependent effects of TCDD were examined on hepatic OCM in mice. Despite AhR ChIP-seq enrichment at 2 h, OCM gene expression was not changed within 72 h following a bolus dose of TCDD. Dose-dependent repression of methionine adenosyltransferase 1A (Mat1a), adenosylhomocysteinase (Achy) and betaine-homocysteine S-methyltransferase (Bhmt) mRNA and protein levels following repeated treatments were greater at 28 days compared to 8 days. Accordingly, levels of methionine, betaine, and homocysteic acid were dose-dependently increased, while S-adenosylmethionine, S-adenosylhomocysteine, and cystathionine exhibited non-monotonic dose-dependent responses consistent with regulation by OCM intermediates and repression of glycine N-methyltransferase (Gnmt). However, the dose-dependent effects on SAM-dependent metabolism of polyamines and creatine could not be directly attributed to alterations in SAM levels. Collectively, these results demonstrate persistent AhR activation disrupts hepatic OCM metabolism at the transcript, protein and metabolite levels within context of TCDD-elicited progression of steatosis to steatohepatitis with fibrosis.


Assuntos
Ácido Fólico/metabolismo , Fígado , Metionina/metabolismo , Hepatopatia Gordurosa não Alcoólica , Dibenzodioxinas Policloradas/toxicidade , Adenosil-Homocisteinase/metabolismo , Animais , Betaína-Homocisteína S-Metiltransferase/metabolismo , Carbono/metabolismo , Progressão da Doença , Fibrose , Glicina N-Metiltransferase/metabolismo , Fígado/metabolismo , Fígado/patologia , Metionina Adenosiltransferase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
17.
Toxicol Appl Pharmacol ; 398: 115034, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387183

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent aryl hydrocarbon receptor (AhR) agonist that elicits a broad spectrum of dose-dependent hepatic effects including lipid accumulation, inflammation, and fibrosis. To determine the role of inflammatory lipid mediators in TCDD-mediated hepatotoxicity, eicosanoid metabolism was investigated. Female Sprague-Dawley (SD) rats were orally gavaged with sesame oil vehicle or 0.01-10 µg/kg TCDD every 4 days for 28 days. Hepatic RNA-Seq data was integrated with untargeted metabolomics of liver, serum, and urine, revealing dose-dependent changes in linoleic acid (LA) and arachidonic acid (AA) metabolism. TCDD also elicited dose-dependent differential gene expression associated with the cyclooxygenase, lipoxygenase, and cytochrome P450 epoxidation/hydroxylation pathways with corresponding changes in ω-6 (e.g. AA and LA) and ω-3 polyunsaturated fatty acids (PUFAs), as well as associated eicosanoid metabolites. Overall, TCDD increased the ratio of ω-6 to ω-3 PUFAs. Phospholipase A2 (Pla2g12a) was induced consistent with increased AA metabolism, while AA utilization by induced lipoxygenases Alox5 and Alox15 increased leukotrienes (LTs). More specifically, TCDD increased pro-inflammatory eicosanoids including leukotriene LTB4, and LTB3, known to recruit neutrophils to damaged tissue. Dose-response modeling suggests the cytochrome P450 hydroxylase/epoxygenase and lipoxygenase pathways are more sensitive to TCDD than the cyclooxygenase pathway. Hepatic AhR ChIP-Seq analysis found little enrichment within the regulatory regions of differentially expressed genes (DEGs) involved in eicosanoid biosynthesis, suggesting TCDD-elicited dysregulation of eicosanoid metabolism is a downstream effect of AhR activation. Overall, these results suggest alterations in eicosanoid metabolism may play a key role in TCDD-elicited hepatotoxicity associated with the progression of steatosis to steatohepatitis.


Assuntos
Eicosanoides/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fígado/efeitos dos fármacos , Dibenzodioxinas Policloradas/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Fígado Gorduroso/metabolismo , Feminino , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Hidrocarboneto Arílico/metabolismo
18.
Toxicol Appl Pharmacol ; 388: 114872, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31881176

RESUMO

Acetamide (CAS 60-35-5) is detected in common foods. Chronic rodent bioassays led to its classification as a group 2B possible human carcinogen due to the induction of liver tumors in rats. We used a toxicogenomics approach in Wistar rats gavaged daily for 7 or 28 days at doses of 300 to 1500 mg/kg/day (mkd) to determine a point of departure (POD) and investigate its mode of action (MoA). Ki67 labeling was increased at doses ≥750 mkd up to 3.3-fold representing the most sensitive apical endpoint. Differential gene expression analysis by RNA-Seq identified 1110 and 1814 differentially expressed genes in male and female rats, respectively, following 28 days of treatment. Down-regulated genes were associated with lipid metabolism while up-regulated genes included cell signaling, immune response, and cell cycle functions. Benchmark dose (BMD) modeling of the Ki67 labeling index determined the BMD10 lower confidence limit (BMDL10) as 190 mkd. Transcriptional BMD modeling revealed excellent concordance between transcriptional POD and apical endpoints. Collectively, these results indicate that acetamide is most likely acting through a mitogenic MoA, though specific key initiating molecular events could not be elucidated. A POD value of 190 mkd determined for cell proliferation is suggested for risk assessment purposes.


Assuntos
Acetamidas/toxicidade , Carcinógenos/toxicidade , Contaminação de Alimentos , Neoplasias Hepáticas/genética , Modelos Biológicos , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade/efeitos dos fármacos , Imunidade/genética , Antígeno Ki-67/análise , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Masculino , RNA-Seq , Ratos , Ratos Wistar , Medição de Risco/métodos , Testes de Toxicidade Crônica/métodos , Regulação para Cima/efeitos dos fármacos
19.
Regul Toxicol Pharmacol ; 108: 104451, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31470077

RESUMO

Acetamide (CAS 60-35-5) is classified by IARC as a Group 2B, possible human carcinogen, based on the induction of hepatocellular carcinomas in rats following chronic exposure to high doses. Recently, acetamide was found to be present in a variety of human foods, warranting further investigation. The regulatory body JECFA has previously noted conflicting reports on acetamide's ability to induce micronuclei (MN) in mice in vivo. To better understand the potential in vivo genotoxicity of acetamide, we performed acute MN studies in rats and mice, and a subchronic study in rats, the target species for liver cancer. In the acute exposure, animals were gavaged with water vehicle control, 250, 1000, or 2000 mg/kg acetamide, or the positive control (1 mg/kg mitomycin C). In the subchronic assay, bone marrow of rats gavaged at 1000 mg/kg/day (limit dose) for 28 days was evaluated. Both acute and subchronic exposures showed no change in the ratio of polychromatic to total erythrocytes (P/E) at any dose, nor was there any increase in the incidence of micronucleated polychromatic erythrocytes (MN-PCE). Potential mutagenicity of acetamide was evaluated in male rats gavaged with vehicle control or 1500 mg/kg/day acetamide using the in vivoPig-a gene mutation assay. There was no increase in mutant red blood cells or reticulocytes in acetamide-treated animals. In both acute and sub-chronic studies, elevated blood plasma acetamide in treated animals provided evidence of systemic exposure. We conclude based on this study that acetamide is not clastogenic, aneugenic, or mutagenic in vivo in rodent hematopoietic tissue warranting a formal regulatory re-evaluation.


Assuntos
Acetamidas/toxicidade , Acetamidas/sangue , Acetamidas/farmacocinética , Animais , Eritrócitos/efeitos dos fármacos , Feminino , Contaminação de Alimentos , Masculino , Proteínas de Membrana/genética , Camundongos , Testes para Micronúcleos , Mutação , Ratos Wistar , Testes de Toxicidade Subcrônica
20.
Sci Rep ; 9(1): 6514, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31015483

RESUMO

Aryl hydrocarbon receptor (AhR) activation is reported to alter the hepatic expression of circadian clock regulators, however the impact on clock-controlled metabolism has not been thoroughly investigated. This study examines the effects of AhR activation on hepatic transcriptome and metabolome rhythmicity in male C57BL/6 mice orally gavaged with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) every 4 days for 28 days. TCDD diminished the rhythmicity of several core clock regulators (e.g. Arntl, Clock, Nr1d1, Per1, Cry1, Nfil3) in a dose-dependent manner, involving either a ≥ 3.3-fold suppression in amplitude or complete loss of oscillation. Accordingly, protein levels (ARNTL, REV-ERBα, NFIL3) and genomic binding (ARNTL) of select regulators were reduced and arrhythmic following treatment. As a result, the oscillating expression of 99.6% of 5,636 clock-controlled hepatic genes was abolished including genes associated with the metabolism of lipids, glucose/glycogen, and heme. For example, TCDD flattened expression of the rate-limiting enzymes in both gluconeogenesis (Pck1) and glycogenesis (Gys2), consistent with the depletion and loss of rhythmicity in hepatic glycogen levels. Examination of polar hepatic extracts by untargeted mass spectrometry revealed that virtually all oscillating metabolites lost rhythmicity following treatment. Collectively, these results suggest TCDD disrupted circadian regulation of hepatic metabolism, altering metabolic efficiency and energy storage.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Perfilação da Expressão Gênica/métodos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metabolômica/métodos , Dibenzodioxinas Policloradas/farmacologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Poluentes Ambientais/farmacologia , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Glicogênio Hepático/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Periodicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA